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Abstract

Evolutionary algorithms are sensitive to the mutation rate
(MR); no single value of this parameter works well across
domains. Self-adaptive MR approaches have been proposed
but they tend to be brittle; for example, they sometimes decay
the MR to zero, thus halting evolution. To make self-adaptive
MR robust, this paper introduces the Group Elite Selection of
Mutation Rates (GESMR) algorithm. GESMR co-evolves a
population of solutions and a population of MRs, such that
each MR is assigned to a group of solutions. The result-
ing best mutational change in the group, instead of average
mutational change, is used for MR selection during evolu-
tion, thus avoiding the vanishing MR problem. With the same
number of function evaluations and with almost no overhead,
GESMR converges faster and to better solutions than previ-
ous approaches on a wide range of continuous test optimiza-
tion problems. GESMR also scales well to high-dimensional
neuroevolution for supervised image-classification tasks and
for reinforcement learning control tasks. Analysis of the dis-
tribution of function changes during mutation explains why
self-adaptation is prone to premature convergence and how
GESMR overcomes this issue. Empirically, GESMR pro-
duces MRs that are optimal in the long-term, as demonstrated
through a comprehensive look-ahead grid search. GESMR
and the analysis have theoretical and practical implications
for the fields of artificial life and evolutionary computation.

1 Introduction
Biological evolution has produced an incredible diversity of
life that is seen everywhere. In this process, the solutions and
the mechanisms co-evolve end-to-end, including the muta-
tion rate (MR; Metzgar and Wills 2000). Self-adaptation of
MRs (SAMR) is a technique common in the literature of ge-
netic algorithms (GA) that encapsulates this idea of end-to-
end evolution of the MR along with the individuals (Meyer-
Nieberg and Beyer 2007; Bäck 1992; Smith and Fogarty
1996; Dang and Lehre 2016). The idea is to assign each
individual its own MR, creating a pair. The pairs are then
evolved end-to-end using the assigned MR for mutating the
individual and a “meta” MR for mutating the assigned MR.

However, this approach often runs into the problem that
the MRs produced decay to zero, causing evolution to stop
at a sub-optimal value. If instead the MR were fixed at some
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moderate value, evolution would continue and find a better
function value (Clune et al. 2008; Rudolph 2001; Glickman
and Sycara 2000). This premature convergence can be at-
tributed to the fact that most mutations hurt the fitness of an
individual (Clune et al. 2008), and thus an effective way for
an individual to preserve its fitness into the next generation
is to have no mutation. Thus, SAMR ignores the long-term
goal of evolution to explore the fitness landscape and find
better solutions in future generations (Clune et al. 2008).

To counteract this effect, this paper proposes a novel
GA based on supportive co-evolution (Goldman and Tau-
ritz 2012) of solutions and MRs, entitled Group Elite Se-
lection of Mutation Rates (GESMR). After assigning each
MR to a group of solutions, the solutions are evolved us-
ing that MR, and the MRs are evolved according to the best
change in function value from the MR’s solution group, de-
fined as the “group elite”. By targeting the MR that produces
the best change in function value, given many mutation sam-
ples, GESMR can mitigate the vanishing MR problem. Ad-
ditionally, GESMR is straightforward to implement and re-
quires no more function evaluations than a fixed MR GA,
and thus can be applied to a wide range of GA problems.

In prior work, a related approach using the idea of group
elites was formulated as a multi-armed bandit problem and
applied to entire genetic operators in an ad-hoc manner (Fi-
alho et al. 2008; Whitacre, Pham, and Sarker 2009). In con-
trast, this paper demonstrates that the approach is most ef-
fective when focused on MRs, and it also makes it possible
to understand this result both empirically and theoretically.

Evaluation of GESMR is performed on common bench-
mark test optimization problems from the GA literature. To
show that the method scales well to harder problems, it is
also evaluated on neuroevolution for image classification
in the MNIST/Fashion-MNIST domain and on reinforce-
ment learning for control in the CartPole, Pendulum, Ac-
robot, and MountainCar domains. For comparison, results
of several adaptive MR algorithms including an oracle opti-
mal fixed MR, an oracle look-ahead MR (that uses foresight
to determine MR), self-adaptive MR, the multi-armed ban-
dit method (Fialho et al. 2008), and some common heuristic
methods (Rechenberg 1978) are also reported.

GESMR outperforms other algorithms in most tasks.
Even when SAMR prematurely converges, like in prob-
lems with especially rugged fitness landscapes (Clune et al.



2008), GESMR does not. As a matter of fact, GESMR per-
forms as well as the oracle look-ahead MR in function value
and even matches the MR to the empirically estimated long-
term optimal MR. To explain why, the statistical distribu-
tion of the change in function value for a spectrum of MRs
for different function landscapes is empirically analyzed and
visualized. This analysis shows that SAMR is minimizing
an MR objective whose optimal MR is zero in rugged land-
scapes, while GESMR is minimizing an objective whose op-
timal MR is nonzero.

2 Related Work
Research on mutation rates (MRs) is one of the most
studied sub-fields of genetic algorithms (Aleti and Moser
2016; Eiben, Hinterding, and Michalewicz 1999; Karafo-
tias, Hoogendoorn, and Eiben 2015; Kramer 2010; Hassanat
et al. 2019; Bäck and Schütz 1996).

Fixed MRs: Lots of theoretical and empirical work has
been done on finding the optimal fixed MR for specific prob-
lems (Greenwell, Angus, and Finck 1995; Böttcher, Doerr,
and Neumann 2010), finding heuristics like the MR should
be proportional to 1/Lwhere L is the length of the genotype
(Ochoa 2002; Doerr, Doerr, and Lengler 2019). Evolution-
ary bilevel optimization tries to find the optimal evolution-
ary parameters, including MR, by running an inner evolution
with an outer loop searching over parameters (Sinha, Malo,
and Deb 2018; Liang and Miikkulainen 2015). However, it is
commonly known that the optimal MR is constantly chang-
ing during evolution (Patnaik and Mandavilli 1986).

Deterministic MRs: Deterministic MRs are common but
these are ad hoc functions to change the MR as a function of
the number of generations, and may not generalize to unseen
problems with different landscapes (Aleti and Moser 2016).

Adaptive MRs: Adaptive MRs are also common
(Thierens 2002; Srinivas and Patnaik 1994; Patnaik and
Mandavilli 1986; Doerr, Doerr, and Lengler 2019; Sewell
et al. 2006) but these rely on another ad hoc system to
determine how to alter the MR given feedback from the
evolution. A common technique is to maintain a MR that
produces mutations of which only one-fifth are beneficial
(Karafotias, Hoogendoorn, and Eiben 2015; Rechenberg
1978), by increasing MR when the percentage of successful
mutations is greater than 1/5 (and vice versa). Although
this technique is based on empirical findings, it is ad-hoc,
does not generalize to different landscapes, requires a hard-
coded threshold, and has been shown to lead to premature
convergence when elitism is employed (Rudolph 2001).

Self-Adaptive MRs: Perhaps the most promising and evo-
lutionarily plausible class of adapting MRs is that of self-
adapting MRs (Kramer 2010; Aleti and Moser 2016; Bäck
1992; Gomez 2004; Thierens 2002). This technique concate-
nates an MR to each individual and evolves the MRs and
individuals in one end-to-end evolutionary process. How-
ever, many previous works have shown this process to be
brittle and lead to premature convergence of evolution as
the MRs decay and vanish (Rudolph 2001; Glickman and

Sycara 2000; Clune et al. 2008; Meyer-Nieberg and Beyer
2007). In the instances where self-adapting MRs succeed,
the authors attribute the cause to be from a relatively smooth
fitness landscape (Clune et al. 2008; Glickman and Sycara
2000), or high selection pressure (Maschek 2010). The cause
of general premature convergence in rugged landscapes is at-
tributed to the fact that most mutations are deleterious, caus-
ing self-adaptation to prefer solutions that mutate less and
preserve the fitness of each individual (Clune et al. 2008;
Glickman and Sycara 2000). Clune et al. (2008) mention
that, in this way, evolution is short-sighted: it cannot adapt
MRs to be optimal for the long-term, only optimizing for
short-term performance.

Outlier-Based MRs: Some works have proposed looking
at the best mutation produced by a certain mutation opera-
tor to judge the quality of the operator (Fialho et al. 2008;
Whitacre, Pham, and Sarker 2009), with the motivation that
an operator that produces infrequent large fitness gains is
preferred to one that produces frequent small fitness gains.
However, these works model the operator selection as a
multi-armed bandit problem. This technique is not only un-
natural to evolution, it is also limited by the expressiveness
of the arms used and assumes independent arms, thus failing
to capture the continuous spectrum that the MR exists in.

3 Method
This section first provides the formal problem definition, a
discussion of the general class of genetic algorithms, and
then briefly describes a previous adaptive mutation rate
(MR) method and its associated vanishing MR problem. Fi-
nally this section proposes the Group Elite Selection of Mu-
tation Rates (GESMR) algorithm that addresses this prob-
lem with better performance and almost no extra overhead.

3.1 Problem Formulation
Consider the general optimization problem where the goal
is to find the best decision variable x∗ ∈ Rd that minimizes
a target function f (e.g. the negative fitness function in the
genetic algorithm literature). The objective is therefore

arg min
x∈Rd

f(x). (1)

3.2 Genetic Algorithms and the Mutation Rate
A genetic algorithm (GA) evolves a population ofN+1 can-
didate solutions/individuals x0, . . . , xN over time that pro-
gressively minimize the objective in Eq. 1. At each evolution
time step t, the current population is {x(t)

i }Ni=0.
To produce the next generation, a GA consists of 1) se-

lection of individuals, 2) mutation of individuals, and 3)
crossover of individuals.

The common truncation selection method with one elite
is used in this paper. Truncation selection creates a new set
ofN+1 solutions by keeping the single best “elite” solution
from the population (known as elitism) and uniformly sam-
pling the rest of the N solutions from the top ηx portion of
the population with replacement (better solution has lower
f(x) value) (Such et al. 2017).
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Figure 1: Comparison of GESMR against a fixed MR GA and SAMR. Fixed MR GA only evolves the solution with a given MR.
SAMR evolves pairs of solutions and MRs. GESMR co-evolves a population of solutions and a population of MRs separately.
Each MR is assigned a group and the MRs are evolved using the best function value gain in the MR’s corresponding group.

Since it is a common way to mutate a continuous geno-
type x (Such et al. 2017), the Gaussian mutation operator
M : Rd → Rd is used, which produces x′ with

x′ ∼M(x;σ) , x+ σε, and ε ∼ N (0, I). (2)
where N (0, I) denotes a standard multi-variate normal dis-
tribution in Rd. σ ∈ R≥0 represents the mutation rate
(MR), which constrains how different x′ could be from x.

Crossover is used to mix information between solutions,
essentially allowing traits to be transferred to another solu-
tion. For the sake of simplicity and to isolate the mutation
operator, which is the main focus of this work, no crossover
operator is used since crossover is not a necessary mecha-
nism in GAs (Such et al. 2017).

For conventional GA algorithms, a fixed MR is chosen
a priori based on the user’s preference or prior knowledge.
Clearly, a too small σ will slow down evolution and a
too large σ will tend towards random search, a tuned σ is
needed. It has also been shown that the optimal σ changes
over the course of evolution, e.g. a small σ is often needed
to “fine tune” the solutions at the end of evolution (Cer-
vantes and Stephens 2009). As a result, the adaptive MR
field studies how to dynamically adapt this σ for faster learn-
ing and better convergence. Among previous adaptive MR
methods, a well-known and commonly used method is the
self-adaptation of MR (SAMR) (Kramer 2010; Aleti and
Moser 2016; Bäck 1992; Gomez 2004; Thierens 2002). This
method attaches to each solution xi its own MR, σi. These
pairs {(xi, σi)} are then evolved, by selection on the pairs
and mutating the xi using σi and mutating σi using an ex-
ternal fixed meta MR τ .

In practice, a well-known drawback of SAMR is that the
MRs produced could prematurely converge to zero over time
(Rudolph 2001; Clune et al. 2008; Glickman and Sycara
2000), which is referred to here as the vanishing mutation
rate problem (VMRP). One might try to simply clip the
MR to a lower bound, but a single lower bound that main-
tains exploration early on while still allowing for fine tuning
later may not exist (Cervantes and Stephens 2009). There-
fore, there exists a need for a better adaptive MR strategy.

Algorithm 1: One step of GESMR

Input: current solutions {x(t)
i }Ni=0, current mutation rates

{σ(t)
k }Kk=1, the selection rates ηx, ησ , and the meta mutation

rate, τ .
Output: next generation of solutions {x(t+1)

i }Ni=0 and mu-
tation rates {σ(t+1)

k }Kk=1.
1: // 1. Evolve the solutions
2: {x̂(t)

i }Ni=0 ← sort {x(t)
i }Ni=0 with ascending f(x̂

(t)
i )

3: Generate {x̃(t)
i }Ni=0 according to Eq. 3 {Selection}

4: Generate {x(t+1)
i }Ni=0 according to Eq. 4{Mutation}

5: // 2. Evolve the mutation rates
6: Calculate ∆

(t)
k according to Eq. 5 {MR worth}

7: {σ̂(t)
k }Kk=1 ← sort {σ(t)

k }Kk=1 with ascending ∆
(t)
k

8: Generate {σ̃(t)
k }Kk=1 according to Eq. 6 {Selection}

9: Generate {σ(t+1)
k }Kk=1 according to Eq. 7{Mutation}

10: return {x(t+1)
i }Ni=1 and {σ(t+1)

j }Kj=1

3.3 Group Elite Selection of Mutation Rates
This section presents Group Elite Selection of Mutation

Rates (GESMR), to adapt MRs on the fly, along with empir-
ical evidence that GESMR mitigates the VMRP and outper-
forms previous adaptive MR methods. For visualization of
GESMR, refer to Fig. 1.

GESMR keeps a set of K positive scalar MRs {σk}Kk=1,
whereN ≡ 0 (mod K), and co-evolves them with theN +
1 candidate solutions, so that the σs do not decay to zero.

At each optimization step t, the current population,
{x(t)

i }Ni=0 is first sorted in ascending order of f(x
(t)
i ), giving

{x̂(t)
i }Ni=0. Truncation selection with one elite is applied to

get the next generation parents, {x̃(t)
i }Ni=0, with

x̃
(t)
i =

{
x̂

(t)
0 i = 0

∼ U{x̂(t)
0 , . . . , x̂

(t)
m−1} i = 1, . . . , N

(3)



and m = ηxN (number of solutions for parent selection).
Then, the non-elite solutions, {x̃(t)

1 }Ni=1 are split into K
groups of equal size (i.e. each group hasN/K solutions) and
each group is assigned a different σk. Without loss of gen-
erality, σk corresponds to {x̃(t)

(k−1)N/K+1, . . . , {x̃
(t)
kN/K}. To

form the next generation, each x̃(t)
i is then mutated accord-

ing to its corresponding σk, while the elite is unaltered:

x
(t+1)
i =

{
x̃

(t)
0 i = 0

∼M(x̃
(t)
i ;σbiK/Nc) i = 1, . . . , N

(4)

After the next generation of {x(t+1)
i }Ni=0 are found,

GESMR evolves the MRs, {σk}Kk=1 using another separate
but similar GA with one elite, truncation selection, and a
different mutation operator.

For each σk, its negative fitness is calculated by consider-
ing the best change in function value it has produced:

∆
(t)
k , ∆(σ

(t)
k ) =

kN/K

min
i=(k−1)N/K+1

(
f(x

(t+1)
i )− f(x̃

(t)
i )
)
.

(5)
First the MR population is sorted by this ∆

(t)
k , producing

{σ̂Kk=1}. Truncation selection with one elite is applied to get
the next generation parent MRs {σk}Kk=1 with

σ̃
(t)
k =

{
σ̂

(t)
1 k = 1

∼ U{σ̂(t)
1 , . . . , σ̂

(t)
l } k = 2, . . . ,K

(6)

and l = ησK (number of MRs for parent selection). The
mutation operator associated with the σs is

σ′ ∼Mσ(σ; τ) , στ ε and ε ∼ U(−1, 1)

where U(−1, 1) represents a continuous uniform distribu-
tion on R and τ represents a fixed meta mutation rate.

The next generation of MRs is produced by mutating the
parent MRs, while the elite parent is unaltered:

σ
(t+1)
i =

{
σ̃

(t)
1 i = 1

∼Mσ(σ̃
(t)
i ; τ) i = 2, . . . ,K

(7)

One full step of GESMR is described in Alg. 1.
The performance of GESMR depends on the number of

groups, K. When K = 1, GESMR recovers the fixed-MR
method. When K = N , each solution aside from the elite is
assigned a different MR, a method reminiscent of the SAMR
method. The experiment section shows that in practice the
optimal K lies between 1 and N , and uncovers a heuristic
on how to choose such a K.

4 Experiment
The experiments in this section are designed to answer the
following questions:

1. How does GESMR compare to other methods in terms of
the quality of function values found and how quickly it
converges to those values?

2. Does SAMR suffer from the Vanishing Mutation Rate
Problem (VMRP)? Does GESMR solve this problem,
and can it produce MRs that are optimal in a long-term
sense?

3. What parts of GESMR are vital to its success?
4. Why is GESMR more successful than SAMR?
5. What is the optimal group size in GESMR and how much

does this parameter matter?
6. Does GESMR generalize to the high-dimensional loss

landscapes of neuroevolution?
7. Does GESMR generalize to neuroevolution for rein-

forcement learning control tasks?

4.1 Comparison Algorithms
For comparison, the following MR selection and adaptation
algorithms are evaluated in various optimization problems:
• †OFMR: Optimal fixed MR found with a grid search;
• †LAMR-G: MR determined at every G generations by

“looking ahead,” that is, by running a grid search multi-
ple times and picking the MR that produces the best elite
in another evolution run (initialized with the current pop-
ulation and run for G generations);

• FMR: A fixed MR of σ = 0.01;
• 1CMR A fixed MR of σ = 1/d (Ochoa 2002);
• 15MR: MR is doubled if the percentage of beneficial mu-

tations is above 1/5 in the current generation and cut in
half if not (Rechenberg 1978);

• UCB/R: The adaptive MR method proposed by Fialho
et al. (2008), implemented with a multi-armed bandit
with R arms (each corresponding to a different MR), and
sampling an arm every generation using the upper confi-
dence bound algorithm (Fialho et al. 2008);

• SAMR: Self-adaptation of MR, where each solution is
assigned its own MR and evolved end-to-end;

• GESMR: The method of Algorithm 1;
• GESMR-AVG: The method of Algorithm 1 with the min

in Eq. 5 replaced with the mean;
• GESMR-FIX: The method of Algorithm 1 with the MRs

fixed to the initial population and not evolved further.
Details for the parameters of these algorithms are provided
in the Appendix. The †represents that the algorithm is an
oracle using foresight (looking ahead of the current evolu-
tion step) to determine the MR and should not be compared
against directly. Note that LAMR-G specifically uses fore-
sight to determine the best MR for the next G generations.
With sufficiently large G, its MRs thus serve as an empirical
estimate of the optimal long-term MRs at any point during
evolution.

4.2 Test Optimization Functions
All algorithms are evaluated on common test functions:
Ackley, Griewank, Rastrigin, Rosenbrock, Sphere, and Lin-
ear (Surjanovic and Bingham 2013). Definitions of these test
functions are provided in the Appendix. Each function is
evaluated for dimension d ∈ {2, 10, 100, 1000}, with the



Figure 2: Elite function value and average mutation rate
(MR) over generations of evolution by different adaptive
MR methods, applied to four test optimization problems.
Notice GESMR outperforms other methods in function
value and is able to match its MR to the one from LAMR-
100.

initial population sampled from N (0, I) and N (0, 102I)
(referenced in table as std with values 1 and 10). These func-
tions were chosen because they are common in the GA liter-
ature and they span a diverse range of ruggedness for func-
tion landscapes (Malan and Engelbrecht 2009). All results
are averaged over five seeds.

Fig. 2 shows selected runs from this experiment, display-
ing the elite function value and the average MR over gener-
ations. The full list of final elite function values are reported
in Table 1 in the Appendix, serving as a statistic on how
good the final solution is. The full list of average elite func-
tion values over all evolution iterations are reported in Ta-
ble 2 in the Appendix, serving as a statistic on how quickly
the algorithm converges to a good solution. Mean squared
error between the log MR of an algorithm and the log MR
of LAMR-100 (averaged over generations) are reported in
Table 3 in the Appendix, serving as a statistic on how close
to optimal the MRs are.

To answer Question 1, GESMR outperforms other meth-
ods, excluding the oracles, in almost all domains both in
terms of the final function value and in terms of quickness
of convergence to good values.

To answer Question 2, SAMR only succeeds and matches
the performance of LAMR when the function landscape is
relatively non-rugged, like in the Rosenbrock and Sphere
functions. In the rugged functions, SAMR consistently pro-
duces MRs that are sub-optimal and smaller than those pro-
duced by even OFMR, and thus also lags behind in elite

function value during evolution. Thus, SAMR struggles with
the VMRP, as shown in previous work (Rudolph 2001;
Clune et al. 2008; Meyer-Nieberg and Beyer 2007). How-
ever, GESMR overcomes this phenomenon and surprisingly
consistently matches its average MR to the long-term opti-
mal MR produced by LAMR-100 (i.e. red and black lines
match in Fig. 2, and GESMR has consistently the lowest er-
ror in Table 3 in the Appendix).

The limitations of of all methods except 15MR, SAMR,
and GESMR can be seen in the linear test function. The op-
timal MR for this case is σ →∞, but other methods are un-
able to approximate this result because they limit themselves
to an upper bound (ex. UCB-R is limited by the largest MR
in its arms). On the other hand, GESMR quickly keeps scal-
ing up the MR until reaching a very large MR. GESMR is
also arbitrarily precise, fine tuning MRs with an evolution-
ary process. In contrast, UCB-R and the grid search methods
constrain the MRs to a quantized range.

To answer Question 3, GESMR-AVG and GESMR-FIX
were run as an ablation of GESMR, with the results shown
in Fig. 2 and Tables 1, 2, 3 in the Appendix. GESMR out-
performs both of them, suggesting that the use of the best
mutation statistic and the evolution of MRs are both vital to
its success.

4.3 Empirical Analysis of GESMR vs. SAMR
To answer the Question 4, two objectives for σ are defined
based on a change of function value, and these objectives
are shown to be related to the methods of GESMR-AVG,
GESMR, and SAMR. These objectives are then statistically
analyzed over different function landscapes to explain the
behavior of the algorithms.

Consider the change in function value for a mutation
given a solution and MR:

∆(x, σ) ∼ f(M(x;σ))− f(x). (8)

For simplicity, this variable will be denoted as ∆. Let
{∆q}N/Kq=1 represent independently and identically dis-
tributed instances of ∆ where q indexes an individual within
its group. To minimize f(x) in evolution, a σ must be chosen
to minimize ∆(x, σ) in some capacity (denoted as an “MR
objective”). Consider the MR objectives

σ∗µ = arg minσ Ex,ε[∆(x, σ)] i.e. the mean objective; and

σ∗min = arg minσ Ex,ε[minq ∆q(x, σ)], i.e. the outlier ob-
jective.

The expectations in the objectives are over x sampled from
the current population and the noise in the mutation op-
erator, ε. For simplicity, these objectives are denoted as
arg minσ E[∆] and arg minσ E[minq ∆q], respectively. The
mean objective corresponds to the algorithm GESMR-AVG,
which directly selects σs to minimize a sample average of ∆.
The outlier objective corresponds to the algorithm GESMR,
which directly selects σs to minimize the best (lowest-value)
sample of {∆q}. SAMR does not select σs directly, but
rather selects (xi, σi) pairs to minimize f(xi). However, be-
cause xi is produced using the parent of σi, SAMR also in-
directly selects pairs (xi, σi) based on σis that produce non-



Figure 3: Visualization of mutations and the distribution of
the change in function value from the mutations, ∆(x, σ)
(defined in Eq. 8), for nine labeled mutation rates, σ, at one
point, x, on the 2-D Ackley function. The left plots show an
image representation of the 2-D function landscape where
lighter colors are higher values and annotates the original
solution and some mutated solutions. The right plots show
the empirical histogram of ∆(x, σ) and annotates the mean
and minimum samples of this histogram. Only moderate σs
are able to mutate to the global minimum.

Figure 4: A representation of σ versus ∆(x, σ) (defined in
Eq. 8) colored by the empirical probability density function,
p∆(δ;σ) and the respective log distribution for the 2-D Ack-
ley function. Many samples of ∆(x, σ) are generated from
x ∼ N (0, I), and a logarithmic range of σs, and put into
bins of a σ-∆ grid, colored by the number of samples the
bin has. Annotated are the σ versus E[∆;σ] (mean of ∆s)
and E[minq ∆q;σ] (min of ∆s) curves, and the σs that min-
imize them. Importantly, notice that σ∗µ = 0 and σ∗min > 0.

deleterious mutations over generations consistently. This
mechanism is intuitively associated with the mean objective.

To analyze general function landscapes outside of evo-
lution, x is is either fixed to a point or sampled from a
distribution, and many more samples for {∆q} are used.
Fig. 3 shows a histogram of samples from ∆ and visual-
izes their respective mutations across values of σ for a sin-
gle x in the Ackley 2-D function, highlighting that the best
mutation comes from a σ that is not too small and not too
large. Fig. 4 represents this same information, but sampling
x ∼ N (0, I), for a continuous range of σ as a visualiza-
tion of the probability density function (PDF), p∆(δ;σ). The
sigma versus the mean objective and the outlier objective
curves as well as their optimal σ solutions, σ∗µ and σ∗min are
shown over the PDF. Fig. 5 displays this same plot for sev-
eral other test optimization problems.

Figure 5: A representation of the σ versus ∆(x, σ)(defined
in Eq. 8) colored by the empirical probability density func-
tion p∆(δ;σ), and the respective log distribution for sev-
eral different test optimization functions of different di-
mensionality. Many samples of ∆(x, σ) are generated from
x ∼ N (0, I) and a logarithmic range of σs and put into bins
of a σ versus ∆ 2-D grid, colored by the number of samples
the bin has. Annotated are the σ versus E[∆;σ] (mean of
∆s), E[minq ∆q;σ] (min of ∆s), and E[maxq ∆q;σ] (max
of ∆s) curves, and the optimal σ that minimizes the first two
curves. All curves show that σ∗µ → 0 and σ∗min > 0.

As Fig. 5 shows E[∆] often increases monotonically with
σ. As a result, the optimal MR tends to go to zero, i.e.
σ∗µ → 0. Interestingly, E[minq ∆q] is zero for σ = 0, and
decreases monotonically as σ increases until σ = σmin

∗ , and
then increases monotonically with σ, leading to σ∗min 6→ 0.
These behaviors hold true for all landscapes tested, except
for the non-rugged linear landscape. Intuitively, this finding
makes sense. As σ → ∞, E[∆] = Ex′ [f(x′)] − Ex[f(x)]
(first expectation over all x′ possible by mutation) becomes a
a constant (i.e. there is no search) and E[minq ∆q] becomes
random search over the entire function landscape. Both val-
ues can be assumed to be worse than any partially optimized
solutions during evolution, so both MR objectives will tend
towards positive values. As σ → 0 (i.e. no mutation), both
MR objectives vanish. If σ < σc for some σc such that the
function landscape can be approximated as linear, it can be
shown that ∆(x, σ) ∼ N (0, σ2‖∇f(x)‖2), where∇f(x) is



Figure 6: Elite final function value of GESMR versus the
number of groups, K, as the population size, N increases in
the Ackley 100-D function. As N → ∞, the optimal K →
N3/4, suggesting K does not need tuning.

the gradient of f , leading to E[∆] = 0 and E[minq ∆q] < 0.
Therefore, the outlier objective will have σ∗min > 0.

These results explain empirically why GESMR-AVG and
SAMR often suffer from the VMRP in rugged landscapes,
and how GESMR may be able to overcome this limita-
tion. Underneath the empirical analysis lies the fundamen-
tal flaw in GESMR-AVG and SAMR: the assumption that
a σ should consistently produce non-deleterious mutations.
Because most mutations are deleterious (Clune et al. 2008),
this condition is possible only if σ → 0. On the other hand,
GESMR incorporates this assumption into the algorithm it-
self, by considering only the best mutation from a σ, and
ignoring the other mostly deleterious mutations.

4.4 Ablation on the Group Size Parameter
To answer Question 5, and to evaluate the optimal number
of groups, K, evolution was run on the Ackley, Griewank,
Rosenbrock, and Sphere functions with d = 100 and K
equal to all factors of N for various values of N . It turns
out that if the number of groups is too small, i.e. K → 1,
or too big, i.e. K → N , the performance drops very fast
(Fig. 6). In general, K =

√
N is a reasonable value, but as

N →∞, the optimalK → N3/4. This finding suggests that
the number-of-groups hyperparameter can be set according
to N and does not need tuning.

4.5 Neuroevolution for Image Classification
To answer Question 6, the algorithms were run on the
high dimensional loss landscapes of neuroevolution for im-
age classification with the common MNIST and Fashion-
MNIST datasets (LeCun 1998; Xiao, Rasul, and Vollgraf
2017). The details of the datasets, the NN architecture
evolved, and the experimental setup are provided in the Ap-
pendix. Each algorithm was run independently five times
and the mean loss and the standard error measured.

GESMR outperforms all other methods, including FMR
and SAMR, but does not beat 15MR (Fig. 7). Presumably,
15MR’s hyperparameter of 1/5 is especially suited to the
MNIST loss landscapes but might have trouble generalizing

Figure 7: Elite function value and average mutation rate (for
different mutation rate control strategies) versus generations
of neuroevolution applied to image classification in MNIST
and Fashion-MNIST. GESMR outperforms most methods
except 15MR.

to other problems, like the test optimization problems and
the reinforcement learning control problems.

4.6 Neuroevolution for Reinforcement Learning

Reinforcement learning (RL) tasks are amenable to the neu-
roevolution approach because the approach tolerates long
time-horizon rewards well (Salimans et al. 2017; Such et al.
2017). To answer Question 7, the algorithms were evaluated
on four common RL control tasks: CartPole, Pendulum, Ac-
robot, and MountainCar (Brockman et al. 2016). In all these
tasks, a controller maps the robot’s input observations to ei-
ther continuous or discrete actions to maximize a cumulative
reward. The details of these environments, the neural archi-
tecture evolved, and the experimental setup are provided in
the Appendix. Each algorithm was run independently five
times and the mean and standard error of performance was
measured.

The results are shown in Fig. 8 in the Appendix. GESMR
generally outperformed other methods including the base-
line fixed MR and SAMR. Presumably, GESMR fails in
MountainCar because the reward signal is very sparse (zero
rewards provide no way to appropriately select for MRs).

5 Conclusion

In this paper, a novel and simple adaptive mutation rate
(MR) method, group elite selection mutation rate (GESMR),
was proposed to mitigate the vanishing mutation rate prob-
lem (VMRP), along with empirical analysis that grounds
its success over self-adaptation of mutation rates (SAMR).
Comprehensive experiment results showed that GESMR
outperforms previous adaptive MR methods in final value
and convergence speed. GESMR also consistently matches
its MRs to the empirically estimated long-term optimal MR.
Thus, this work provides the next step in designing self-
adaptive machine learning algorithms.
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