# SEAM CARVING -**GRAPHICS PROGRAMMING** ASSIGNMENT 05

**AKARSH KUMAR** 

#### IMAGE USED



### ENERGY MAP

- Vertical and Horizontal edge detection kernels used on image
- Results were combined using a Pythagorean combination technique because it is a natural and distributive way to combine two transformed images
- Code:

ly=cv2.filter2D(img\*1.0,-1,edge\_kernel) lx=cv2.filter2D(img\*1.0, 1,edge\_kernel.T) l=(lx\*lx+ly\*ly)\*\*.5

#### pic\_l\_a.png



### DYNAMIC PROGRAMMING

 Dynamic Programming was used to find the values to place optimal seams vertically and horizontally





Algorithm Direction



pic\_l\_b.png

## FIRST VERTICAL SEAM

 Vertical seam found using smallest values in the dynamic maps



pic\_l\_c\_2.png

pic\_l\_c\_0.png





### **REMOVED VERTICAL SEAMS**

• I and 50 vertical seams were removed:

 $pic_l_d.png$ 





pic\_l\_e.png

### FIRST HORIZONTAL SEAM

 Horizontal seam found using smallest values in the dynamic maps

pic\_2\_a\_0.png





pic\_2\_a\_2.png

#### **REMOVED HORIZONTAL SEAMS**

 50 horizontal seams were removed:

original



pic\_2\_b.png



### **RETARGETED IMAGES**

 Repeated seam removals were used the change the dimensions of the image



pic\_3\_b\_0.png (320x240)

 Image started from a dimension of 1090x795



pic\_3\_b\_2.png (640x480)



#### pic\_3\_b\_1.png (320x320)



pic\_3\_b\_3.png (640x640)