
Filters and 

Transformations: 

Graphics Programming 

Assignment 01
AKARSH KUMAR



Images Used

 The following two images were used for altering and 

transformations:

 This image was used for perspective transform:



Greyscale and Black and White

 A function to convert an image to greyscale was made by taking 
20% of the blue channel, 70% of the green channel, 10% of the red 
channel. 

 Code:

 newimg = 0.2*img[:,:,2]+0.7*img[:,:,1]+0.1*img[:,:,0]

 The blackWhite function to convert it to pure black and white 
established a threshold of 128. Any value of a pixel higher than the 
threshold was reset to 255 while everything below or equal to the 
threshold was set to zero.

 Code:

 newimg[newimg<=128] = 0

 newimg[newimg>128] = 255



Desaturate and Contrast

 To desaturate an image, the weighted average of the image’s color 
channels and the greyscale value of them was taken using the 
percentage of desaturation.

 Code:

 newimg[:,:,0] = newimg[:,:,0]*(1-percent)+greyimg[:,:]*percent

 newimg[:,:,1] = newimg[:,:,1]*(1-percent)+greyimg[:,:]*percent

 newimg[:,:,2] = newimg[:,:,2]*(1-percent)+greyimg[:,:]*percent

 Contrast was done by scaling all color channels of the image by a 
given factor from the baseline 128 value.

 Code:

 newimg[:,:,:] = (newimg[:,:,:]-128)*factor+128

 newimg[newimg>255] = 255

 newimg[newimg<0] = 0



Mirror Transformation Matrix

 The following matrix was used to mirror the image across the y-axis:



−1 0 𝑖𝑚𝑔_𝑤𝑖𝑑𝑡ℎ
0 1 0
0 0 1

 The first -1 scaled the x coordinates of all points by -1 and flipped 
them across the y axis. 

 The img_width translated this new flipped image to the appropriate 

spot to make it look like it was flipped across the center.



Rotation Transformation Matrix

 To rotate the image about the bottom right corner, a matrix was first 
created to translate the bottom right corner to the origin of the grid

 Then, it was rotated clockwise using a rotation matrix

 Finally, it was translated back to where the bottom right corner would 
be where it originally was

 Code:

 matrix1 = math.array([[1,0,-img_width],[0,1,-img_height],[0,0,1]],math.float32)

 matrix2 = math.array([[costheta,sintheta,0],[-
sintheta,costheta,0],[0,0,1]],math.float32)

 matrix3 = math.array([[1,0,img_width],[0,1,img_height],[0,0,1]],math.float32)

 M = matrix3.dot(matrix2).dot(matrix1)

 img2 = cv2.warpPerspective(img2,M,(x,y))



Perspective Transformation Matrix

 The points of the vertices of the cube in image3 were found using a 

program online that located pixel coordinates.

 The points of image1 and image2 were then transformed to the 

cube points using the following code:

 Mtrans1 = cv2.getPerspectiveTransform(ptsimg1,pts1)

 Mtrans2 = cv2.getPerspectiveTransform(ptsimg2,pts2)

 img1trans = cv2.warpPerspective(img1,Mtrans1,(x,y))

 img2trans = cv2.warpPerspective(img2,Mtrans2,(x,y))



Perspective Transformation Matrix 

Continued

 The transformed image was then placed on top of image3 using 

boolean masking built into python

 A mask was created to show where the transformed image is not 

black, then the mask was used to copy and paste everything from 

the transformed image into image3 only where the mask validated 

so

 Code:

 mask = trans[:,:,:] !=0

 newimg[mask] = trans[mask]


