
Long-Range Memory Transformers

Akarsh Kumar
Massachusetts Institute of Technology
akarshkumar0101@gmail.com

Abstract

Long-range memory is commonly recognized
as one of the key things missing from the
current state of the art Transformers in natural
language processing. Current approaches to
adding memory to transformers do not capture
the necessary benefits that memory should
provide, such as scalability, abstraction,
compositionality, and hierarchy. One of the
most notable problems with these all of these
approaches is the models’ tendency to acquire
a recency bias and only process short-range
information and ignore long-range signals. We
propose a new architecture, the Long-Range
Memory Transformer (LRMT), which creates
long-range representations by explicitly
separating out the gradient information into
long-range and short-range components. This
allows us to maintain a growing list of long-
range memory representations of all contexts
the model has seen so far and attend to them
as needed in the future. The training of this
model is made efficient by only ever main-
taining two copies of the network. We open
source all code for this project at https:
//github.com/akarshkumar0101/
transformer-memory/tree/
master/skip.

1 Introduction

The field of natural language processing has been
dominated by the Transformer neural architec-
ture and its attention mechanism (Vaswani et al.,
2017). Transformers reached state of the art re-
sults on essentially every task, which led to the
development of “foundation models": large lan-
guage models pre-trained on lots of language
which can then be adapted for many specific tasks.

Transformers perform extremely well in lan-
guage modeling but suffer from a very significant
problem: they are critically bounded in sequence
length by their context size. Increasing their con-
text size is not a scalable approach since it re-

quires O(n2) time and space compute in the con-
text length.

This paper aims to tackle one of the most impor-
tant questions in language modeling and AI: how
can extremely long-range memory (near 100,000
tokens) naturally emerge within Transformers? If
an NLP architecture can naturally model long-
range memories it may revolutionize the field. Ex-
isting approaches to memory suffer from several
problems including lack of scalability or composi-
tionality.

One key hypothesis for this project is that, in
Transformers, the representations created by the
tokens contain predominantly short-range infor-
mation. This is because the gradients that update
those representations primarily flow from the fu-
ture words that are nearby. It is well known that
information dependence in language falls off with
distance, d, at a rate of 1/d. This means that
the gradient information to update word wt’s to-
ken comes mostly wt+1, wt+2, wt+3. Information
from more future words do come, but the gradi-
ent signal is much smaller due to the lack of de-
pendence. Thus, the created representations are
dominated by short-range gradients. Due to this,
we hypothesize that Transformers learn a recency
bias and do not fully utilized long-range informa-
tion. We back this claim up by showing the per-
character perplexity does not improve past a cer-
tain point, indicating it is not doing long-range
information processing, though long-range depen-
dencies in the underlying text exist.

To overcome all of these limitations, we pro-
pose a novel architecture, the Long-Range Mem-
ory Transformer (LRMT). LRMT explicitly sep-
arates out the long-range and short-range gradient
information to create “long-range memory tokens”
which may not be useful for prediction in this cur-
rent context, but are forced to be useful arbitrar-
ily far in the future. LRMT’s memory represen-
tations are not dominated by short-range informa-
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tion, but rather enjoy long-range interactions. We
show that LRMT does indeed use this memory to
achieve lower perplexity in future contexts. How-
ever, LRMT still has limitations generalizing to
more memory tokens at inference time. We pro-
vide advice for future work attempting to fix the
limitations and build on our work.

2 Related Work

Lots of work has been proposed to address mem-
ory in natural language processing.

Recurrent Networks: Recurrent Neural Net-
works (RNNs) and more specifically, Long Short-
Term Memory Networks (LSTMs) are recurrent
networks trained with backpropagation-through-
time (Olah, 2015). Although they enjoy, theo-
retically, an infinite range memory, in practice
they suffer from vanishing and exploding gradi-
ents. This makes it extremely difficult to do credit
assignment properly in extremely long range se-
quences as the gradient information gets noisy or
destroyed. RNNs and LSTMs also suffer from the
fact that each time iteration requires an entire copy
of the recurrent cell in memory These two fac-
tors together make RNNs and backpropagation-
through-time not a scalable or practical approach
to achieving long-range memory in language mod-
els.

Vanilla Transformer: Transformers were
shown to be one of the biggest achievements in
natural language processing and in AI in general
(Vaswani et al., 2017). However, the power of the
vanilla Transformer architecture requires O(n2)
time and space in the sequence length. This
makes it great for smaller sequence lengths, but
is not scalable for a one/two order of magnitude
increase in the sequence length, given the current
compute bottlenecks. The information flow of a
vanilla Transformer is shown in Fig 1.

Transformer-XL: Transformer-XL improves
upon the vanilla transformer by caching hidden
states from previous contexts with a custom trick
to handle the positional encodings (Dai et al.,
2019). However, this simply extends the context
length by a factor and does not give a reliable way
to scale up to extremely long sequence lengths.
The information flow of Transformer-XL is shown
in Fig 1b.

Figure 1: The information flow in the (a) vanilla Trans-
former, (b) Transformer-XL, and (c) Perceiver-AR. Re-
trieved from https://arxiv.org/pdf/2202.
07765.pdf.
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Perceiver-AR: Perceiver-AR performs cross at-
tention with k latent tokens and the the entire se-
quence of size n in the first layer, making it O(n)
in time and space compute, which scales well
(Hawthorne et al., 2022). However, the Perceiver-
AR only attends to the raw input tokens of the se-
quence and thus is not able to create a composi-
tional/contextual representations of the sequence
in any way for long-range sequences. This is a
huge downside and essentially voids all the pow-
erful representations created by a strong Trans-
former architecture. However, if these representa-
tions that are cross-attended to were in some way
to be compositional/contextual, this model would
prove to be a powerful approach. Our architecture
attempts to do exactly this, while keeping it train-
able through a clever training proposal. The infor-
mation flow of Perceiver-AR is shown in Fig 1c.

Compressive Transformer: Compressive
Transformer tries to compress past memories by
performing a lossless compression with a recon-
struction loss (Rae et al., 2019). This leads to the
created memories not being abstract/hierarchical
enough in order for it to be useful far in the future.
Some intelligent lossy compression mechanism
will be needed for extremely long sequence
lengths, as shown by natural intelligence.

3 Methods

In order to solve the memory problems discussed
above, we propose the long-range memory Trans-
former (LRMT) architecture. This architecture ex-
plicitly separates out short-range and long-range
information in the gradients allowing it to create
explicitly short-range and long-range representa-
tions.

When processing a context, LRMT performs
regular Transformer processing to outputs the pre-
dicted next tokens. However, LRMT also out-
puts a sequence of “long-range" memory tokens,
which are representations of the context that are
abstract enough to be useful arbitrarily far in the
future. They are not constrained to be useful in
any way for the processing of the current context.
More specifically, these special representations are
not in any way drowned out by the short-range
local high-frequency information of the current
context, but rather capture long-range global low-
frequency features which should generalize the in-
formation for use in the far future. Said another
way, this long-range memory need not be useful

right now, but must be useful far in the future.
To use past memories, LRMT can also be in-

putted any number of long-range memory tokens
from past contexts to aid in the processing of the
current context.

3.1 Memory Creation

The vanilla transformer stack consists of a se-
quence of causal attention blocks. We keep this
regular transformer stack, but somewhere in the
middle (after a third of the blocks), we extract the
representation tokens. These tokens are then fed
into full attention (non-causal) “memory-creator"
blocks. The output of these blocks are the long-
range memory tokens. These blocks do not need
to be causal since their job is simply to summarize
the entire context, in any way possible, as to cre-
ate memories useful for the future. This pathway
is shown by the non-causal attention block in the
middle of Fig 2.

3.2 Memory Retreival

A similar mechanism is used for retrieving past
memories to aid in the processing of the current
context. The regular transformer stack is executed,
but somewhere in the middle (after a third of
the blocks), we extract the representation tokens.
These tokens are then fed into causal “memory-
retreiver" blocks. The output of these blocks are
“memory-retrieval" tokens. Then, a full cross-
attention is performed by using queries from the
memory-retrieval tokens and the keys and values
from the inputted memory tokens. The result is
a new set of tokens which have extracted all the
useful information (useful for the current context)
from the memories. These tokens undergo another
causal block of transformations. Then, they are
merged back into the main Transformer pathway
when the main branch performs cross-attention
between the queries of the main pathway and the
keys and values of the concatenation of the main
pathway and these memory-retrieved tokens. This
cross attention is doubly-causal, meaning that it
is causal with respect to the main pathway tokens
and the memory-retrieved tokens. This special
construction of causal and non-causal blocks en-
sures that information current context next token
information is not leaked to previous tokens, while
still ensuring that past memories are compressed
completely and fully attended to.



Figure 2: Our proposed model during training time.
During training, only two copies of the model are
stored in memory. These are fed in different contexts
separated by T timesteps, where T is a random num-
ber. Model A summarizes the context A into some
“long-range" representation tokens which serve as the
memory tokens. These memory tokens are fed into the
memory input for model B. Model B is allowed to at-
tend to memory tokens in any way as to minimize the
cross-entropy loss for context B. This decomposition
enforces a special path of long-range gradients to flow
to improve the perplexity of context B based on the
long-range information in context A. Black lines show
the forward pass of information and the red lines show
the backward gradient flow of information.

Figure 3: Our proposed model during inference time.
During inference, consecutive chunks of contexts are
fed into the model. The long-range representation to-
kens created by each context are constantly concate-
nated into a memory bank containing all the memories.
The model is allowed to attend to all memories from
previous contexts when processing the current context.
This leads to a O(n) time and space compute.

3.3 Training Time

During training, we take two copies of LRMT
and feed them contexts A and B, separated by T
tokens. Then, we feed in the long-range mem-
ory output from context A into the memory input
pathway for context B to help predict B’s context.
By randomly varying T during training, we en-
force the model create long-range memories that
are useful arbitrarily far into the future. Fig 2 pro-
vides an overview of the training procedure. The
flow of gradients in red shows that only long-range
information is ever transmitted through the long-
range memory creation and retriever stacks.

3.4 Inference Time

During inference time, we consecutively go
through the contexts and create long-range mem-
ories for each context and concatenate all of them
into a growing list of memory tokens. By inputting
this list of previous memory tokens for each con-
text, we allow the model to access all previous
memories via the memory-retrieval cross-attention
mechanism. This list grows with the sequence
length and thus results in a O(n) time and space
complexity in the sequence length.

4 Results

4.1 Data and Compute

We gathered natural language data from
books on Project Gutenberg (https:
//www.gutenberg.org/). This gave an
corpus of stories that was split into a training and
testing set.

https://www.gutenberg.org/
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We conduct all experiments on a character-level
model to 1) artificially increase the amount of data,
2) ensure long-range dependencies exist, and 3)
ensure large amounts of compositionality is re-
quired in the memories.

All experiments for this project were done on
four Titan Xp graphics cards on a single machine
provided by the Embodied Intelligence Lab’s vi-
sion GPU cluster.

We implemented the vanilla Transformer and
LRMT from scratch in PyTorch, building off of the
GPT-2 architecture. Everything from the multi-
head attention mechanism and MLP blocks to the
positional encodings were built from scratch. We
chose to do this to gain a full understanding of
the model its weaknesses. Building off of exist-
ing codebases was not possible due to the drastic
changes required in LRMT.

4.2 Hyperparamters
A learning rate sweep was initially performed to
find the optimal learning rate of 3e−4, which was
then used to train all models. Various parame-
ters for batch size and sequence length were also
tested.

4.3 Evaluation
We evaluate all models on three per-character per-
plexity metrics. The first metric is per-character
perplexity of characters within words. This metric
captures the performance of the model on short-
range information. The second metric is per-
character perplexity of the first characters of com-
mon words. This metric captures the performance
of the model on medium-range information. The
third metric is per-character perplexity of the first
characters of more rare words. Since this met-
ric has previously been found to empirically cor-
relate with long-range dependencies in language,
this metric captures the performance of the model
on long-range information. These metrics are also
tracked across the token position in the context to
see how the model scales up given more informa-
tion in the context.

4.4 Does the vanilla Transformer Prioritize
Short-Range Information?

We investigate whether or not the vanilla Trans-
former creates representations that are useful for
long-range information processing. One way to
test this is to train a very large model with a large
context size and see the perplexity plotted against

Figure 4: The perplexity statistics for a large vanilla
Transformer with context length 64. The second row
shows the average perplexity for within-word and com-
mon to rare tokens plotted against the position in the
context. The third row shows the percentage change of
the perplexity from the previous position to the current
position. This plot demonstrates how the perplexity de-
creases given more information in the context. The reg-
ular transformer does not get better after 10 characters
of past data, meaning it does not do long-range infor-
mation processing.

the token position in the context. If this perplex-
ity keeps getting lower throughout the context, it
is successfully utilizing all the information from
the context, even the long-range information from
the beginning of the context. We know that the
character sequences consist of words which con-
tain sentence and paragraph level dependencies. If
the model were properly modeling these depen-
dencies, we should see the perplexity of the first
character of the words to decrease over the range
of 100-200 words, and definitely within a context
length of 64 characters. However, Fig 4 shows that
the vanilla transformer only gets better at perplex-
ity for the first 10 tokens, then plateaus. This holds
true for all the frequency bins, hinting that it is
not doing long-range processing and is instead cre-
ating only short-range representations useful for
prediction less than 10 tokens in the future. We
hypothesize that this happens because the the rep-
resentations’ weak long-range gradients is domi-
nated and drowned out by the much stronger sig-
nal from the short-range gradients.

4.5 Does Long-Range Memory Help?
Fig 5 shows that the LRMT does indeed outper-
form the vanilla Transformer in perplexity. The
second sequence processed with LRMT, using
memory from the first sequence, does have lower



Figure 5: The perplexity of the vanilla Transformer and LRMT with various context lengths over the course of
training. seq_0 indicates the first context shown to the vanilla Transformer and LRMT. seq_1 indicates the second
context shown to the vanilla Transformer and LRMT. LRMT outperforms the vanilla Transformer in the second
context when given the first context as memory, meaning that it is properly utilizing the memory.

Figure 6: Perplexity statistics for the first context
shown to LRMT.

perplexity than the first sequence processed by
LRMT, meaning the memory mechanism is work-
ing. Interestingly, LRMT is able to create repre-
sentations than even help perplexity within the first
sequence, compared to the vanilla Transformer.

4.6 Does training with two contexts
generalize to inference with N contexts?

We now investigate whether it is okay to train us-
ing only two copies of the network, while chaining
together N copies during inference time. Fig 6,
Fig 7, and Fig 8 show the perplexity statistics for
the first, second, and fourth contexts processed by
LRMT during inference. Each context is given
all the previous contexts’ memory tokens as mem-
ory inputs. The second context does indeed show
better performance than the first, since the mem-
ory mechanism does indeed work. However, the

Figure 7: Perplexity statistics for the second context
shown to LRMT. This outperforms the first context in
essentially frequency range, meaning LRMT is using
the memory from the first context properly.

fourth context shows the same performance as the
first, which is worse than the second. Thus, attend-
ing to a different number of tokens during train-
ing and inference time is not valid. One option
to mitigate this issue would be to incorporate the
ideas from ALiBi to help extrapolative generaliza-
tion in the attention mechanism to larger sequence
lengths (Press et al., 2022).

4.7 Issues Encountered
We encountered two issues during the training of
LRMT.

Long-range gradient is near zero. Fig 9
shows that the magnitude of the gradients for
the memory-creator and memory-retrieval blocks
were one or two orders of magnitude less than the



Figure 8: Perplexity statistics for the fourth context
shown to LRMT. This degrades performance back to
the first context, meaning LRMT struggles to utilize
memory when given memory from the past three con-
texts. This is due to the fact that LRMT is trained using
only one context’s memory, and at inference is using
the past N contexts’ memory.

Figure 9: The gradient magnitude in the main blocks,
memory-creator blocks, and memory-retriever blocks
in LRMT. The memory-creator and memory-retriever
blocks suffer from one or two orders of magnitude
smaller gradients, which is a problem during training.

main blocks. This issue was partially solved by
decreasing T , thus increasing the dependency be-
tween the two contexts in the language. Another
solution left for future work may be to scale up the
gradient and increase the batch size drastically to
get accurate long-range gradients.

Transformer learns to ignore long-range path-
way tokens. We found that the transformer con-
sistently learned to ignore the long-range path-
way memory-retrieved tokens, and only used them
sometimes. To what extent this is a problem is
unknown, since maybe memory is supposed to be
only sparsely activated and attended to. However,
if future work finds this to be a significant prob-
lem, one fix is to enforce that the transformer must
half-way attend to context tokens as well as half-
way attend to long-range tokens. Another more
natural fix may be to use ALiBi positional encod-
ings ensuring that the transformer cannot use posi-
tion to discriminate against long-range tokens, and
must use content based information (Press et al.,
2022).

4.8 Discussion

Overall, LRMT does show promise in its ability to
create long-range memory representations. How-
ever, more thorough testing of the true effective-
ness of LRMT compared to vanilla Transform-
ers is still needed, such as in word-level model-
ing. More study is also needed on the true prop-
erties of the long-range memories as compared to
the vanilla Transformer’s representations. Which
representations are good for which kinds of tasks
and at which timescales? Despite the effective-
ness of this approach still being up in the air, we
believe this general paradigm of separating long-
range and short-range information will be critical
in future work. We outline potential directions go-
ing forward in the next section.

5 Future Work

One potentially interesting direction for future
work is to benchmark the performance of the long-
range model and the previous models on a “Which
sentence came first?" task. Essentially, does the
network learn representations for sentences, such
that, when we put a classification head on top of
these representations for two separate sentences, it
can correctly tell which sentence came first? If the
representations can answer this question, it is very



likely it is containing long-range information in a
sense.

Another interesting direction forward will be
to experiment with ALiBi positional encodings
(Press et al., 2022) as outlined in the previous sec-
tion.

6 Conclusion

We proposed the Long-Range Memory Trans-
former (LRMT), a novel approach to adding mem-
ory to the transformer which bypasses several cur-
rent issues of existing memory extension mod-
els. We believe that the idea of explicitly sepa-
rating out short-range and long-range graident in-
formation will be a vital step forward to ensure
the proper creation of long-range memory. With-
out this mechanism, the long-range information is
dominated and drowned out by the short-range in-
formation leading to the creation of short-sighted
representations. LRMT is shown to outperform
the regular vanilla transformer and properly uti-
lize its memory for achieving lower perplexity on
rare words. However, LRMT still requires many
improvements to be practically useful and scale to
larger inference time memory lengths.

7 Impact Statement

This work furthers the state of the art in large lan-
guage models and thus all limitations and harms
caused by them is applicable to this work as well.
Specifically, large language models are known to
exacerbate harmful biases existing the datasets
they were trained on (Bender et al., 2021). For
example, if the natural language data contains
text that is derogatory to certain (often minior-
ity) groups, this model will also suffer from those
harmful biases. The proposed model, LRMT, may
actually make this problem worse if the mem-
ory tokens contain biased and harmful informa-
tion. Further investigation is needed to understand
how the memory and language models in general
can be trained to avoid these failure cases. Fur-
ther investigation is also needed on examining the
datasets used for training to mitigate the amount
of bias that can leak into these models.
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