
Long-Range Memory Transformers

Akarsh Kumar
Massachusetts Institute of Technology
akarshkumar0101@gmail.com

Abstract

Long-range memory is commonly recognized
as one of the key things missing from the
current state of the art Transformers in natural
language processing. Current approaches to
adding memory to transformers do not capture
the necessary benefits that memory should
provide, such as scalability, abstraction,
compositionality, and hierarchy. One of the
most notable problems with these all of these
approaches is the models’ tendency to acquire
a recency bias and only process short-range
information and ignore long-range signals. We
propose a new architecture, the Long-Range
Memory Transformer (LRMT), which creates
long-range representations by explicitly
separating out the gradient information into
long-range and short-range components. This
allows us to maintain a growing list of long-
range memory representations of all contexts
the model has seen so far and attend to them
as needed in the future. The training of this
model is made efficient by only ever main-
taining two copies of the network. We open
source all code for this project at https:
//github.com/akarshkumar0101/
transformer-memory/tree/
master/skip.

1 Introduction

The field of natural language processing has been
dominated by the Transformer neural architec-
ture and its attention mechanism (Vaswani et al.,
2017). Transformers reached state of the art re-
sults on essentially every task, which led to the
development of “foundation models": large lan-
guage models pre-trained on lots of language
which can then be adapted for many specific tasks.

Transformers perform extremely well in lan-
guage modeling but suffer from a very significant
problem: they are critically bounded in sequence
length by their context size. Increasing their con-
text size is not a scalable approach since it re-

quires O(n2) time and space compute in the con-
text length.

This paper aims to tackle one of the most impor-
tant questions in language modeling and AI: how
can extremely long-range memory (near 100,000
tokens) naturally emerge within Transformers? If
an NLP architecture can naturally model long-
range memories it may revolutionize the field. Ex-
isting approaches to memory suffer from several
problems including lack of scalability or composi-
tionality.

One key hypothesis for this project is that, in
Transformers, the representations created by the
tokens contain predominantly short-range infor-
mation. This is because the gradients that update
those representations primarily flow from the fu-
ture words that are nearby. It is well known that
information dependence in language falls off with
distance, d, at a rate of 1/d. This means that
the gradient information to update word wt’s to-
ken comes mostly wt+1, wt+2, wt+3. Information
from more future words do come, but the gradi-
ent signal is much smaller due to the lack of de-
pendence. Thus, the created representations are
dominated by short-range gradients. Due to this,
we hypothesize that Transformers learn a recency
bias and do not fully utilized long-range informa-
tion. We back this claim up by showing the per-
character perplexity does not improve past a cer-
tain point, indicating it is not doing long-range
information processing, though long-range depen-
dencies in the underlying text exist.

To overcome all of these limitations, we pro-
pose a novel architecture, the Long-Range Mem-
ory Transformer (LRMT). LRMT explicitly sep-
arates out the long-range and short-range gradient
information to create “long-range memory tokens”
which may not be useful for prediction in this cur-
rent context, but are forced to be useful arbitrar-
ily far in the future. LRMT’s memory represen-
tations are not dominated by short-range informa-

https://github.com/akarshkumar0101/transformer-memory/tree/master/skip
https://github.com/akarshkumar0101/transformer-memory/tree/master/skip
https://github.com/akarshkumar0101/transformer-memory/tree/master/skip
https://github.com/akarshkumar0101/transformer-memory/tree/master/skip


tion, but rather enjoy long-range interactions. We
show that LRMT does indeed use this memory to
achieve lower perplexity in future contexts. How-
ever, LRMT still has limitations generalizing to
more memory tokens at inference time. We pro-
vide advice for future work attempting to fix the
limitations and build on our work.

2 Related Work

Lots of work has been proposed to address mem-
ory in natural language processing.

Recurrent Networks: Recurrent Neural Net-
works (RNNs) and more specifically, Long Short-
Term Memory Networks (LSTMs) are recurrent
networks trained with backpropagation-through-
time (Olah, 2015). Although they enjoy, theo-
retically, an infinite range memory, in practice
they suffer from vanishing and exploding gradi-
ents. This makes it extremely difficult to do credit
assignment properly in extremely long range se-
quences as the gradient information gets noisy or
destroyed. RNNs and LSTMs also suffer from the
fact that each time iteration requires an entire copy
of the recurrent cell in memory These two fac-
tors together make RNNs and backpropagation-
through-time not a scalable or practical approach
to achieving long-range memory in language mod-
els.

Vanilla Transformer: Transformers were
shown to be one of the biggest achievements in
natural language processing and in AI in general
(Vaswani et al., 2017). However, the power of the
vanilla Transformer architecture requires O(n2)
time and space in the sequence length. This
makes it great for smaller sequence lengths, but
is not scalable for a one/two order of magnitude
increase in the sequence length, given the current
compute bottlenecks. The information flow of a
vanilla Transformer is shown in Fig 1.

Transformer-XL: Transformer-XL improves
upon the vanilla transformer by caching hidden
states from previous contexts with a custom trick
to handle the positional encodings (Dai et al.,
2019). However, this simply extends the context
length by a factor and does not give a reliable way
to scale up to extremely long sequence lengths.
The information flow of Transformer-XL is shown
in Fig 1b.

Figure 1: The information flow in the (a) vanilla Trans-
former, (b) Transformer-XL, and (c) Perceiver-AR. Re-
trieved from https://arxiv.org/pdf/2202.
07765.pdf.

https://arxiv.org/pdf/2202.07765.pdf
https://arxiv.org/pdf/2202.07765.pdf


Perceiver-AR: Perceiver-AR performs cross at-
tention with k latent tokens and the the entire se-
quence of size n in the first layer, making it O(n)
in time and space compute, which scales well
(Hawthorne et al., 2022). However, the Perceiver-
AR only attends to the raw input tokens of the se-
quence and thus is not able to create a composi-
tional/contextual representations of the sequence
in any way for long-range sequences. This is a
huge downside and essentially voids all the pow-
erful representations created by a strong Trans-
former architecture. However, if these representa-
tions that are cross-attended to were in some way
to be compositional/contextual, this model would
prove to be a powerful approach. Our architecture
attempts to do exactly this, while keeping it train-
able through a clever training proposal. The infor-
mation flow of Perceiver-AR is shown in Fig 1c.

Compressive Transformer: Compressive
Transformer tries to compress past memories by
performing a lossless compression with a recon-
struction loss (Rae et al., 2019). This leads to the
created memories not being abstract/hierarchical
enough in order for it to be useful far in the future.
Some intelligent lossy compression mechanism
will be needed for extremely long sequence
lengths, as shown by natural intelligence.

3 Methods

In order to solve the memory problems discussed
above, we propose the long-range memory Trans-
former (LRMT) architecture. This architecture ex-
plicitly separates out short-range and long-range
information in the gradients allowing it to create
explicitly short-range and long-range representa-
tions.

When processing a context, LRMT performs
regular Transformer processing to outputs the pre-
dicted next tokens. However, LRMT also out-
puts a sequence of “long-range" memory tokens,
which are representations of the context that are
abstract enough to be useful arbitrarily far in the
future. They are not constrained to be useful in
any way for the processing of the current context.
More specifically, these special representations are
not in any way drowned out by the short-range
local high-frequency information of the current
context, but rather capture long-range global low-
frequency features which should generalize the in-
formation for use in the far future. Said another
way, this long-range memory need not be useful

right now, but must be useful far in the future.
To use past memories, LRMT can also be in-

putted any number of long-range memory tokens
from past contexts to aid in the processing of the
current context.

3.1 Memory Creation

The vanilla transformer stack consists of a se-
quence of causal attention blocks. We keep this
regular transformer stack, but somewhere in the
middle (after a third of the blocks), we extract the
representation tokens. These tokens are then fed
into full attention (non-causal) “memory-creator"
blocks. The output of these blocks are the long-
range memory tokens. These blocks do not need
to be causal since their job is simply to summarize
the entire context, in any way possible, as to cre-
ate memories useful for the future. This pathway
is shown by the non-causal attention block in the
middle of Fig 2.

3.2 Memory Retreival

A similar mechanism is used for retrieving past
memories to aid in the processing of the current
context. The regular transformer stack is executed,
but somewhere in the middle (after a third of
the blocks), we extract the representation tokens.
These tokens are then fed into causal “memory-
retreiver" blocks. The output of these blocks are
“memory-retrieval" tokens. Then, a full cross-
attention is performed by using queries from the
memory-retrieval tokens and the keys and values
from the inputted memory tokens. The result is
a new set of tokens which have extracted all the
useful information (useful for the current context)
from the memories. These tokens undergo another
causal block of transformations. Then, they are
merged back into the main Transformer pathway
when the main branch performs cross-attention
between the queries of the main pathway and the
keys and values of the concatenation of the main
pathway and these memory-retrieved tokens. This
cross attention is doubly-causal, meaning that it
is causal with respect to the main pathway tokens
and the memory-retrieved tokens. This special
construction of causal and non-causal blocks en-
sures that information current context next token
information is not leaked to previous tokens, while
still ensuring that past memories are compressed
completely and fully attended to.



https://www.gutenberg.org/
https://www.gutenberg.org/

